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Why uninformative prior?

The choice of prior is subjective, which is a common criticism levied 
against Bayesian methods. 

Choosing a prior that is “non-decided” and has little influence over the 
posterior distribution can protect against such criticisms.

What is your goal:

a) To find the most accurate answer? Then make an informative prior 
distribution incorporating all information possible.

b) To design an analysis that will convince other people of the validity 
of your results? Then consider an uninformative prior.



How to choose an “uninformative” prior?

Find a “flat” distribution. For example, for a location parameter that 
can take on any real value, choose a constant (improper prior) or 
choose a very flat distribution like 𝑁 0,100000 .

Problem: “flatness” is dependent on parameterization. If you choose a 
flat prior, then if you re-parameterize, that prior is no longer flat. How 
do we make sure that we are using the right scale?



Jeffreys Prior

Jeffreys set out to create an uninformative prior distribution whose definition was 
invariant under re-parameterization.

Particularly, if we have a prior distribution 𝜋 𝜃 , then if we re-parameterize to 𝜙 =
ℎ 𝜃 , then the prior with respect to 𝜙 is 𝜋 𝜃 ℎ′ 𝜃 −1.

If a prior is defined to be proportional to the square root of the determinant of the 
Fisher information matrix, then it will be invariant under this transformation.



Jeffreys Prior for Binomial

For example, binomial distribution has Fisher information 
𝑛

𝑝 1−𝑝
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distribution.



Jeffreys Prior

Why does the Jeffreys prior give more weights to the parameter values that result 
in a distribution with higher Fisher information? 

For points of high Fisher information, opposing evidence will be very strong, and so 
opposing evidence would “quickly” shift the posterior distribution away. For 
example, in the binomial distribution, If we observe 10 heads in a row, then this will 
quickly shift the probability away from values such as p=0.01.



Conjugate families & uninformative priors
When there is a conjugate family, we can sometimes directly observe 
the effect of the prior vs the posterior. 

If we have a X~𝐵𝑖𝑛𝑜𝑚 𝑛, 𝑝 distribution, the conjugate prior 
is 𝑝~𝐵𝑒𝑡𝑎 𝛼, 𝛽 . The posterior distribution is 𝑝~𝐵𝑒𝑡𝑎൫

൯
𝛼 + 𝑋, 𝛽 +

𝑛 − 𝑋 . Remembering 𝐵𝑒𝑡𝑎 1,1 is uniform and that as the 
parameters increase, the beta distribution becomes a steeper and 
steeper hill, we see that the smaller that 𝛼 and 𝛽 are, the less they 
affect the posterior distribution. Thus, 𝐵𝑒𝑡𝑎 1,1 which is flat in 𝑝, 
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the Jeffreys prior, and 𝐵𝑒𝑡𝑎 0,0 which is flat in the natural 

exponential family parameter are all uninformative.



Beta-Binomial Uninformative Priors

𝐵𝑒𝑡𝑎 0,0 is undefined as Γ 0 is undefined.



Conjugate families & uninformative priors
Poisson-Gamma

If 𝑋~𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝜆 , then 𝜆~Γ 𝛼, 𝛽 is a conjugate prior. The posterior 
distribution is 𝜆~Γ 𝛼 + 𝑛 ҧ𝑥, 𝛽 + 𝑛 . We can see that a small 𝛼 and 𝛽
will lead to a posterior dominated by the data. 

Pr 𝜆 < 0.5
= 99%



Jeffreys Prior for Poisson

The Fisher information of a 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝜆 distribution is 
1

𝜆
. Thus, the 

Jeffreys prior is proportional to 
1

𝜆
. This is plotted:



Conjugate families & uninformative priors

Normal, Unknown Mean

If 𝑋~𝑁 𝜇, 𝜎2 with 𝜎2 fixed, then the prior 𝜇~𝑁 𝜏, 𝛾2 is conjugate. 
The posterior distribution is 

𝜇~𝑁
𝜎2

𝜎2 + 𝑛𝛾2
𝜏 +

𝑛𝛾2

𝜎2 + 𝑛𝛾2
ത𝑋 ,

𝜎2𝛾2

𝜎2 + 𝑛𝛾2

This is a weighted sum of 𝜏 and ത𝑋. We can see that the larger the prior 
variance 𝛾2 is, the more the sum is weighted toward the data rather 
than the prior.



Jeffreys Prior for Normal Unknown Mean

The Fisher information is 
1

𝜎2
. This is a constant in 𝜇, so an improper 

constant prior distribution is the Jeffreys prior.



Conjugate families & uninformative priors

Normal, Unknown Variance

If 𝑋~𝑁 𝜇, 𝜎2 with 𝜇 fixed, then the prior 𝜎2~ 𝑆𝑐𝑎𝑙𝑒𝑑𝜒2 −1 𝜂, 𝑠0
2 is 

conjugate. The posterior distribution is 
𝜎2~ 𝑆𝑐𝑎𝑙𝑒𝑑𝜒2 −1 η + 𝑛, 𝜂𝑠0

2 + 𝑛𝑆2

We can see that a small 𝜂 and small 𝑠0
2 will lead to a posterior 

dominated by the data. 



Jeffreys Prior for Normal Unknown Variance

The Fisher information is 
1

2𝜎4
. The Jeffreys prior is thus the improper 

prior that is proportional to 
1

𝜎2
in 𝜎2.

Note that 𝜋 𝜎2 =
1

𝜎2
is equal to 𝜋 𝜎 =

1

𝜎
!



Conjugate families & uninformative priors
Normal, Unknown Mean & Variance

If 𝑋~𝑁 𝜇, 𝜎2 , then the “𝑁𝑜𝑟𝑚𝑎𝑙 𝑆𝑐𝑎𝑙𝑒𝑑𝜒2 −1 𝜏, 𝜂, 𝛾2, 𝑠0
2 prior is 

conjugate:

𝜎2~ 𝑆𝑐𝑎𝑙𝑒𝑑𝜒2 −1 𝜂, 𝛾2 , 𝜇|𝜎2~𝑁 𝜏,
𝜎2

𝜂

The posterior distribution is 

𝑁𝑜𝑟𝑚𝑎𝑙 𝑆𝑐𝑎𝑙𝑒𝑑𝜒2 −1 ቆ

ቇ

𝜂𝜏 + 𝑛 ത𝑋

𝜂 + 𝑛
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+ 𝑛,
1

𝑠0
2 + 𝑛

𝑛 − 1 𝑆2 + 𝑠0
2𝛾2 +

𝑛𝜂

𝑛 + 𝜂
ത𝑋 − 𝜏 2 , 𝑠0

2 + 𝑛

We can see that a small 𝜂, small 𝑠0
2, and small 𝛾2 will lead to a posterior 

dominated by the data. 



Jeffreys Prior for Normal

The Fisher information matrix is 

1

𝜎2
0

0
1

2𝜎4

. The determinant is 
1

2𝜎6
, and 

thus the Jeffreys prior is constant in 𝜇 and proportional to 
1

𝜎6
=

1

𝜎3
in 

𝜎2.

Note that 𝜋 𝜎2 =
1

𝜎3
is equal to 𝜋 𝜎 =

1

𝜎2
!



Larger & More Complex Models

For larger and more complex models, there usually do not exist 
conjugate families, and the Jeffreys prior may be harder to find. 
Further, Gelman notes in BDA that the Jeffreys prior can produce 
counter-intuitive results in high parameter-dimension cases.

- A common practice in hierarchical models is to assign each 
hyperparameter a prior that is individually uninformative (without 
considering the joint distribution). 



Case Study – 2022 Newborns by race

Race Number

White 2712785

Black 574240

American Indian/Alaska Native 35823

Asian Indian 70961

Chinese 41040

Filipino 30839

Japanese 5381

Korean 12583

Vietnamese 19035

Other Asian 53154

Hawaiian 1281

Guamanian 1914

Samoan 2340

Other Pacific Islander 9056

More than one race 105597

This is complete data! 
We do not need to do 
any statistical modeling!



Case Study – 2022 Newborns by race

Race Number

White 2713

Black 574

American Indian/Alaska Native 36

Asian Indian 71

Chinese 41

Filipino 31

Japanese 5

Korean 13

Vietnamese 19

Other Asian 53

Hawaiian 1

Guamanian 2

Samoan 2

Other Pacific Islander 9

More than one race 106

For illustration, let’s 
pretend that we could 
only take a limited 
sample, say 1 in 1000 
people. Dividing the 
numbers by 1000 and 
rounding to the nearest 
integer:



Modeling the % White

We can use a Beta-Binomial model with the Jeffreys prior of 

𝑝~𝐵𝑒𝑡𝑎
1

2
,
1

2
for the percent white 𝑝. We observe 2713/3676 

(73.8%) white newborns and 963/3676 (26.2%) non-white 
newborns. The posterior distribution is 𝐵𝑒𝑡𝑎 2713.5,963.5 .



Modeling the % of each race

The conjugate prior for a multinomial distribution is a Dirichlet 
distribution. 

Note: In Dirichlet distribution, 𝑋𝑖 is independent of 𝑋 −𝑖 ≔
𝑋𝑗

1−𝑋𝑖
|𝑗 ≠ 𝑖 . Furthermore, the marginal distribution of 𝑋𝑖 is:

𝑋𝑖~𝐵𝑒𝑡𝑎 𝛼𝑖 , ∑𝑗≠𝑖𝛼𝑗

The Jeffreys prior is 𝑝~𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡
1

2
, … ,

1

2
. The posterior 

distribution is:
𝑝~𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 2713.5,574.5,36.5… , 106.5



Modeling the % of each race
The posterior distribution is:
𝑝~𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 2713.5,574.5,36.5… , 106.5

The marginal distribution for the 
probability of a newborn being white is 
now:

𝑝𝑤ℎ𝑖𝑡𝑒~𝐵𝑒𝑡𝑎
1

2
+ 2713,

14

2
+ 963

This differs from previous model. In that it 

has 
14

2
instead of 

1

2
. But we have so much 

data, posterior is hardly changed:

Note: A 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 0,… , 0 model would result in the same posterior.



Other considerations

• If we have a success criterion based on the posterior probability, say 
we will declare success if the posterior probability of a parameter 
being >0 is 90% or higher, then assess the probability under the prior 
distribution. If it is too high, then prior can be seen to be influencing 
the results.

• The frequentist operating characteristics can be assessed by 
simulating data under various scenarios. The effect of prior choice on 
the frequentist Type 1 error can be assessed.



Real World Examples – Pfizer Vaccine Trial

Parameter is 𝜃 =
1−𝑉𝐸

2−𝑉𝐸
, where Vaccine Efficacy is 

𝑉𝐸 = 100 1 − 𝐼𝑅𝑅 and infection rate ratio is 

𝐼𝑅𝑅 =
𝐼𝑅𝑡𝑟𝑒𝑎𝑡

𝐼𝑅𝑐𝑜𝑛𝑡𝑟𝑜𝑙
. 𝜃 ∈ 0,1 , values less than 0.5

indicate efficacy and values greater than 0.5
indicate harm.

The prior was 𝐵𝑒𝑡𝑎 0.700102,1 . It is centered 
at 𝜃 = 0.4118 and has 96% CI (0.005,0.964).

Question: Why not use 2 separate Beta 
Binomial models?



Real World Examples – Pfizer Vaccine Trial
At interim analyses, stop for success if 𝑃 𝑉𝐸 > 30%|𝑑𝑎𝑡𝑎 > 0.995
and at the final analysis declare success if 𝑃 𝑉𝐸 > 30%|𝑑𝑎𝑡𝑎 >
0.986. At the 93 cases IA, there were 4 in treatment and 90 in 
control, showing efficacy.



Real World Examples – GSK2798745
Trial testing whether GSK2798745 a TRPV4 inhibitor could treat 
chronic cough. The endpoint was the log-transformed daytime 
cough counts following 7 days of dosing. Let 𝑟 be the ratio of this log 
transformed count in the treatment group vs the control group. 
Planned that n=24 with an interim analysis at n=12. Crossover 
design, so each patient gets both treatment & control.

Success criterion: 𝑃𝑅 𝑟 < 0.7 > 70%

Futility criterion: 𝑃𝑅 𝑟 < 0.7 < 30%



Real World Examples – GSK2798745
Building the model: Let 𝑦𝑖 = log 𝑐𝑜𝑢𝑛𝑡𝑖
Likelihood: Assumed that 𝒚~𝜷𝑿 + 𝝐 and 𝝐~𝑁 0, 𝚺 and 𝚺 is block 
diagonal with a 2x2 block for each subject across the 2 crossover 
periods. This is a Bayesian version of a mixed effects model.

Prior: Fixed effects: 𝛽𝑖~𝑁 0,100000

Covariance matrix: Assumed to be unstructured with each block 
𝜎1
2 𝜎21

𝜎21 𝜎2
2 ~𝐼𝑛𝑣𝑊𝑖𝑠ℎ𝑎𝑟𝑡 (conjugate prior for multivariate normal)

If unstructured gives poor fit, the switch to AR(1), with 
𝜎2 𝜎2𝜙

𝜎2𝜙 𝜎2
, 𝜙~𝑈(−1,1), 𝜎2~𝑖𝑛𝑣𝐺𝑎𝑚𝑚𝑎 0.0001, 0.0001
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